The preparation and distribution of this report to our customers is required by the United States Environmental Protection Agency (EPA). Naval Station (NAVSTA) Newport is committed to providing our customers with high quality drinking water. We work closely with the City of Newport’s Water Division, which is our water supplier. We have also made investments in water monitoring facilities, water quality monitoring, and improvements to the distribution systems in order to deliver a quality product to our customers. We are pleased to report this information along with the results of our 2017 water quality testing directly to you, so you will know about your drinking water first hand.

In this issue

- Your Drinking Water Source
- Facts About Your Water
- Source Water Assessment
- 2017 Water Quality Report
- Definitions & Notes
- Additional Health Information
- Public Notice
- Water System Locations
Your Drinking Water Source

Here are some simple facts you should know about the water you drink. Aquidneck Island contains seven fresh water ponds that serve as drinking water resources. These include Easton North Pond, Easton South Pond, Lawton Valley Reservoir, Gardiner Pond, Saint Mary’s Pond, Paradise Pond and Sisson Pond. There are also two additional drinking water resources located off of Aquidneck Island: Nonquit Pond in Tiverton and Watson Reservoir in Little Compton. These ponds and reservoirs are interconnected through a complex network of pipelines and pumping stations. They are located in a basin area totaling 18.625 square miles or 11,920 acres of rural, forested and some developed land.

The Navy purchases tap water from the City of Newport.¹ The water is treated at either of Newport’s two treatment plants before being distributed to Naval Station Newport and Fort Adams. A majority of the base receives water from the City of Newport’s Lawton Valley Treatment Plant. The new Lawton Valley Treatment Plant, located in Portsmouth, came online September 17, 2014. The remaining portion of the water comes from the Station 1 Newport Treatment Plant in Newport. This plant is the primary supplier for Coasters Harbor Island, the Naval Health Clinic New England and the Fort Adams public water system. Station 1 was built in 1991 and upgraded in 2013-2014. The final upgrade to the Station 1 Treatment Plant went online at the end of July 2014. The treatment plants have a combined capacity of 16 million gallons per day and service over 1,100 Navy connections through a distribution system of more than 62 miles of piping.

Naval Station Newport conducts daily, weekly, monthly, quarterly and annual testing to ensure you receive safe, high quality, drinking water. The Utilities Branch of Public Works is responsible for operating our water system. Operation and maintenance of the water distribution system includes routine flushing of the water lines and the management of 800 fire hydrants, 5 pump houses with several pumps and motors, and over 1600 distribution valves. In total, more than $250,000 was spent on maintenance and water quality testing to ensure the safe and effective operation of the water system. The Navy developed a 5-Phase Rehabilitation Plan consisting of capital improvements to our water distribution system with construction beginning in 2015 and extending through 2021. Phases 1, 2 and 2A have already been completed, which included replacement of water lines at Defense Highway, Melville, Coddington Cove, and Naval Undersea Warfare Center (NUWC). Phase 3 is currently underway and includes the replacement of water lines at Fort Adams, Coddington Cove, Coddington Point, Coasters Harbor Island and Greene Lane. Phase 4 will include continued improvements to Greene Lane Housing areas not completed under Phase 3. Phase 5 will include improvements to Coddington Point and several housing areas.

Facts About Your Water

Drinking water, including bottled water, may be reasonably expected to contain at least some small amounts of certain substances, which the EPA calls “contaminants.” The presence of these substances does not necessarily indicate that the water poses a health risk. More information about the substances found in your water and their potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline (800) 426-4791.

Additionally, the NAVSTA Water Program Manager can be reached at (401) 841-6376 or by email at pamela.crump@navy.mil to answer any questions. This 2017 report as well as previous annual reports can be found online at

Source Water Assessment

The University of Rhode Island (URI), in cooperation with the Rhode Island Department of Health (RIDOH) and other state and federal agencies, has assessed the threats to water supply sources. The assessment considered the intensity of development; the presence of businesses that use, store or generate potential contaminants; how easily contaminants may move through the water-sheds; and the sampling history of the water. The assessment results are being used to plan source protection efforts in the future.

The assessment found the water sources on Aquidneck Island, Little Compton and Tiverton are moderately susceptible to contamination. The average ranking for the entire system is based on land use and existing water quality. Because most land in source water areas are privately owned, the focus of the assessments has been on identifying threats from land use so local governments, residents, and water suppliers can take action to protect valuable drinking water supplies. This means monitoring and protection efforts are especially important to assure continued water quality. The complete Source Water Assessment Report is available from the Newport Water Division or by calling the Rhode Island Department of Health, Office of Drinking Water Quality at (401) 222-6867.

¹ The Portsmouth Water and Fire District also provides tap water to the Navy as needed for emergency events or as a back-up water source.

Consumers may review the City of Newport’s Consumer Confidence Report on the web at http://www.cityofnewport.com/ccr17
Consumers may review the Portsmouth Water and Fire District Consumer Confidence Report at https://portsmouthwater.org/reports/
2017 Water Quality Report

This table shows the results of the combined water quality analyses for Naval Station Newport, Fort Adams and the City of Newport Public Water Systems for the period January 1, 2017 to December 31, 2017. Not all substances were detected in every system or required to be tested in every system.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Highest Allowed by Law</th>
<th>Ideal Goals</th>
<th>Naval Station Newport</th>
<th>Fort Adams</th>
<th>City of Newport</th>
<th>Portsmouth Water and Fire District</th>
<th>SDWA Violation</th>
<th>Detected Range</th>
<th>Major Sources in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Compounds</td>
<td>MCL</td>
<td>MCLG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic (ppb) (1)</td>
<td>10</td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td>2</td>
<td>NS</td>
<td>No</td>
<td>ND - 2</td>
<td>Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes</td>
</tr>
<tr>
<td>Barium (ppm) (1)</td>
<td>2.0</td>
<td>2.0</td>
<td>NS</td>
<td>NS</td>
<td>0.012</td>
<td>NS</td>
<td>No</td>
<td>0.005-0.012</td>
<td>Discharge of drilling wastes; discharge from metal refiners; erosion of natural deposits</td>
</tr>
<tr>
<td>Copper (ppm) (2)</td>
<td>AL = 1.3</td>
<td>1.3</td>
<td>0.13</td>
<td>0.06</td>
<td>0.05</td>
<td>0.025</td>
<td>No</td>
<td>n/a</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives.</td>
</tr>
<tr>
<td>Fluoride (ppm) (3)</td>
<td>4.0</td>
<td>4.0</td>
<td>NS</td>
<td>NS</td>
<td>0.95</td>
<td>NS</td>
<td>No</td>
<td>0.24-0.95</td>
<td>Water additive which promotes strong teeth</td>
</tr>
<tr>
<td>Lead (ppb) (2)</td>
<td>AL = 15</td>
<td>0</td>
<td>40</td>
<td>1</td>
<td>8.3</td>
<td>0.002</td>
<td>Yes</td>
<td>n/a</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits.</td>
</tr>
<tr>
<td>Nitrate (ppm) (1)</td>
<td>10</td>
<td>10</td>
<td>NS</td>
<td>NS</td>
<td>1.00</td>
<td>NS</td>
<td>No</td>
<td>0.25-1.00</td>
<td>Runoff from fertilizer use: leaching from septic tanks; sewage; erosion of natural deposits</td>
</tr>
<tr>
<td>Disinfectants</td>
<td>MRLD</td>
<td>MRLDG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine (ppm)</td>
<td>4</td>
<td>4</td>
<td>1.86</td>
<td>0.85</td>
<td>2.45</td>
<td>2.50</td>
<td>No</td>
<td>0.02-2.50</td>
<td>Water additive used to control microbes.</td>
</tr>
<tr>
<td>Chlorine dioxide (ppb)</td>
<td>800</td>
<td>800</td>
<td>NS</td>
<td>NS</td>
<td>560</td>
<td>NS</td>
<td>No</td>
<td>10-560</td>
<td>Water additive to control microbes</td>
</tr>
<tr>
<td>Disinfection Byproducts</td>
<td>MCL</td>
<td>MCLG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Trihalomethanes (ppb) (4)</td>
<td>80</td>
<td>N/A</td>
<td>91.4</td>
<td>78.9</td>
<td>65.8</td>
<td>84.3</td>
<td>No</td>
<td>12.3-91.4</td>
<td>By-product of drinking water chlorination.</td>
</tr>
<tr>
<td>Haloacetic Acids (ppb)</td>
<td>60</td>
<td>N/A</td>
<td>19.5</td>
<td>13.7</td>
<td>18.3</td>
<td>21.9</td>
<td>No</td>
<td>4.0-19.5</td>
<td>By-product of drinking water chlorination.</td>
</tr>
<tr>
<td>Chlorite (ppm) (8)</td>
<td>1.0</td>
<td>0.800</td>
<td>NS</td>
<td>NS</td>
<td>0.120</td>
<td>NS</td>
<td>No</td>
<td><0.010-0.120</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Microbiology</td>
<td>MCL</td>
<td>MCLG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Coliform Bacteria (% of positive samples)</td>
<td>5%</td>
<td>0%</td>
<td>3.03%</td>
<td>0%</td>
<td>0%</td>
<td>2.8%</td>
<td>No</td>
<td>n/a</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>Turbidity (NTU) (5)</td>
<td>TT</td>
<td>n/a</td>
<td>NS</td>
<td>NS</td>
<td>0.67</td>
<td>NS</td>
<td>No</td>
<td>n/a</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>Turbidity (lowest monthly % of samples meeting limit) (5)</td>
<td>TT</td>
<td>n/a</td>
<td>NS</td>
<td>NS</td>
<td>97.28%</td>
<td>NS</td>
<td>No</td>
<td>n/a</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>Total Organic Carbon (removal ratio)</td>
<td>TT</td>
<td>n/a</td>
<td>NS</td>
<td>NS</td>
<td>2.02</td>
<td>NS</td>
<td>No</td>
<td>1.27-2.02</td>
<td>Naturally present in environment</td>
</tr>
</tbody>
</table>

Synthetic Organic Contaminants Including Pesticides and Herbicides

<table>
<thead>
<tr>
<th>Substance</th>
<th>MCL</th>
<th>MCLG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo(a)pyrene (ppt) (1)</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>Di(2-ethylhexyl)phthalate (ppb) (1)</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Simazine (ppb) (1)</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Unregulated Contaminants

<table>
<thead>
<tr>
<th>Substance</th>
<th>MCL</th>
<th>MCLG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium (ppm)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Metachlor (ppb) (1) (6)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Chlorate (ppb) (7)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Definitions & Notes

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.

ppm (parts per million) equivalent of 1 penny in $10,000,000 or 1 milligram per liter (mg/L)

ppb (parts per billion) equivalent of 1 penny in $10,000,000,000 or 1 microgram per liter (ug/L)

ppt (parts per trillion) equivalent to 1 penny in $10,000,000,000,000 or 1 nanogram per liter (ng/L)

NTU Nephelometric Turbidity Units

n/a Not applicable NS Not sampled ND No detect

(1) Sampled and monitored at raw water supply reservoirs prior to treatment.

(2) Highest level indicates the 90th percentile value of 22 samples at Naval Station Newport, 6 samples at Fort Adams, and 30 samples for the City of Newport and the Portsmouth Water and Fire District. No sites exceeded the lead or copper action level at Fort Adams. Four sites exceeded the lead action level at Naval Station Newport causing an exceedance of the 90th percentile for the system; no sites exceeded the copper action level at Naval Station Newport.

(3) Newport Water adds fluoride to its treated water as an aid in dental cavity prevention in young children.

(4) Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer. Note that although the highest level exceeded the MCL (80 ppb), compliance is determined using the locational running annual average (LRAA) and operational evaluation level (OEL) which were both below the MCL.

(5) 0.67 NTU was the highest single turbidity measurement recorded. The lowest monthly percentage of samples meeting the turbidity limit was 97.28%.

(6) The EPA requires reporting of this contaminant which is on the Contaminant Candidate List 4.

(7) Sampled and monitored at the Newport Water entry points and distribution system.
The sources of drinking water, both tap and bottled, include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or human activity. Other contaminants, including volatile organic chemicals, which are by-products of industrial processes, can come from gas stations or urban storm water runoff. We have included the health effects information for any contaminant near the Maximum Contaminant Levels (MCL) and any unusual contaminants.

Contaminants that may be present in the source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff and septic systems.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water supply systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Lead: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Naval Station Newport is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (800-426-4791) or at www.epa.gov/safewater/lead.

Total Trihalomethanes: Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

General Health Effects Note: Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA / Center for Disease Control guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Treatment Note: Customers of Newport Water, which includes all Navy customers, may at times receive water with a yellow to brown color. This is occasionally due to the level of naturally occurring mineral “manganese” in the reservoirs and ponds. This mineral does not respond to treatment. The EPA has established secondary drinking water regulations for contaminants such as manganese which are recommended goals. These contaminants primarily affect aesthetic qualities (taste, color, and odor) of drinking water. Newport Water balances the treatment processes to meet both the enforceable levels of the primary drinking water regulations with the goals of the secondary drinking water regulations. Newport Water and the Navy regret the inconvenience of the discolored water and we work diligently to avoid these situations.

Additional Health Information

Naval Station Newport is required to sample multiple locations for bacteria (coliform) on a weekly basis for a total of 28 samples per month. On February 21, 2017, one sampling location was offline and we were not able to collect a drinking water sample as required. The bacteria (coliform) sampling data reported to the RI Department of Health for the month of February 2017 included the test results for only 27 samples and incorrectly reported a total of 28 samples had been examined.

Naval Station Newport sent a revised report to the RI Department of Health - Center for Drinking Water Quality on March 31, 2017. We have also developed procedures to ensure that the primary drinking water sampling locations are available when sampling is scheduled to be conducted. In addition, we have established alternate drinking water sampling locations for system operators to sample in the event the primary sampling location is out of service for maintenance or any other reason.

Public Notice: 2016 CCR Reporting Requirements

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER

Reporting Requirements Not Met for

Naval Station Newport and Fort Adams

PWS No. 1000016 and PWS No. 1900046

1 Simonpieri Drive

Newport, RI 02841

Naval Station Newport is required to provide a copy of the Consumer Confidence Report (CCR) to all of our customers and the Rhode Island Department of Health (RIDOH) by July 1st every year. In 2017, we did not provide RIDOH a copy of the CCR for both Naval Station Newport and Fort Adams Public Water Systems by the required date of July 1, 2017.

What is being done?

A copy of the 2016 CCR for both Naval Station Newport and Fort Adams Public Water Systems was provided to RIDOH on July 17, 2017. No further action is required to address this violation. However, we have reviewed and revised our internal procedures and trained key personnel to ensure that all reporting requirements of the RI Rules and Regulations Pertaining to Public Drinking Water [R46-13-DWQ] are met.

For more information, please contact Ms. Pamela Crump, Naval Station Newport’s Drinking Water Program Manager, at 401-841-6376 or pame-la.crump@navy.mil.

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools and businesses). You can do this by posting this notice in a public place or distributing copies by hand, email or mail.