sampled and analyzed to ensure that it is safe to drink.

Arrangements can be made to have your water tested if you have any concerns about your drinking water. Please contact the Guam EPA Support Center Trouble Desk at (671) 333-1321. Additionally, Guam EPA can be reached at (671) 300-4796.

How Can You Report a Water Quality Complaint?

If you find any sediment or taste or odor in your water, please call the Guam EPA Support Center Trouble Desk at (671) 333-1321. Additionally, Guam EPA can be reached at (671) 300-4796.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. If you are concerned about lead in your water, you may wish to flush your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to flush your tap for 30 seconds to 2 minutes before using water for drinking or cooking.

Health Precautions

Immuno-compromised persons such as cancer patients, those who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about enrolling in a water treatment program. For more information about health precautions, please visit www.epa.gov/safewater/lead.

Why are contaminants found in my water?

There are many different sources of drinking water contaminants. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and can pick up other substances from the environment. Some water contaminants are also introduced by human activity. Contaminants that may be present in untreated water include:

- Inorganic contaminants, such as salts and metals, can enter drinking water as a result of natural processes or from human activity. Inorganic contaminants include naturally occurring substances and man-made chemicals, such as pesticides, heavy metals (arsenic, lead, mercury), and elements formed by natural processes in the earth. Water supplies may be contaminated with these substances from agricultural and industrial activities. Some metals may come from sewage treatment plants, or from radiological contamination.

- Organic chemical contaminants, including synthetic organic chemicals, can be naturally occurring or result from urban storm water runoff and septic systems, or be present in wastewater discharges, oil and gas production, mining, or farming. These substances can be man-made or natural products formed by natural processes in the earth. Some organic chemicals are introduced into the water system by the disposal of wastes from manufacturing and processing activities. Some organic chemicals are byproducts of processes, such as the manufacture and reuse of certain chemicals and ingredients. These contaminants can form undesirable substances which can cause harm or poses a health risk.

- Radionuclides are radioactive elements that are formed naturally in the earth's crust and can enter drinking water. Radionuclides that can enter drinking water include naturally occurring radioactive materials and those formed by the decay of natural radionuclides in the earth's crust. Inorganic radionuclides can also enter drinking water from natural processes such as nuclear fallout, which results from the explosion of nuclear weapons.

- Pathogens are disease-causing bacteria, viruses, or parasites that can cause illnesses or infections. These include viruses, bacteria, and parasites that naturally occur in the environment or are brought into the environment by humans. Pathogens can enter drinking water from human or other animal wastes. Pathogens can also enter drinking water from untreated wastewater discharges, septic systems, storm water runoff, and agricultural practices such as irrigation and manure application. Pathogens can also be introduced into drinking water by biota, which are living organisms that can carry disease-causing pathogens.

- Endocrine disruptors are chemicals that interfere with the body's ability to produce hormones. These chemicals can disrupt the normal functioning of the endocrine system and may interfere with reproduction, growth, and development. Endocrine disruptors can enter drinking water from industrial processes and petroleum production, and can also come from agricultural or sewage treatment activities. Some endocrine disruptors can be found in the environment naturally, while others are created by human activities.

- Pesticides are chemicals used to kill pests or to protect crops and livestock. Pesticides can be applied to crops, livestock, and other plants to control and eliminate pests, such as insects, rodents, and weeds. Pesticides can enter drinking water from a variety of sources, including agricultural, industrial, and household uses. Pesticides can also be introduced into drinking water from storm water runoff and septic systems.

- Hormones are chemicals that are produced in the body to control the body's functions. Hormones are important in the body's ability to regulate its systems and to maintain homeostasis. Hormones can enter drinking water from a variety of sources, including agricultural, industrial, and household uses. Hormones can also be introduced into drinking water from storm water runoff and septic systems.

- Hormone disruptors are chemicals that interfere with the body's ability to produce hormones. These chemicals can disrupt the normal functioning of the endocrine system and may interfere with reproduction, growth, and development. Hormone disruptors can enter drinking water from a variety of sources, including agricultural, industrial, and household uses. Hormone disruptors can also be introduced into drinking water from storm water runoff and septic systems.

- Endocrine disruptors are chemicals that interfere with the body's ability to produce hormones. These chemicals can disrupt the normal functioning of the endocrine system and may interfere with reproduction, growth, and development. Endocrine disruptors can enter drinking water from a variety of sources, including agricultural, industrial, and household uses. Endocrine disruptors can also be introduced into drinking water from storm water runoff and septic systems.

- Hormones are chemicals that are produced in the body to control the body's functions. Hormones are important in the body's ability to regulate its systems and to maintain homeostasis. Hormones can enter drinking water from a variety of sources, including agricultural, industrial, and household uses. Hormones can also be introduced into drinking water from storm water runoff and septic systems.

- Hormone disruptors are chemicals that interfere with the body's ability to produce hormones. These chemicals can disrupt the normal functioning of the endocrine system and may interfere with reproduction, growth, and development. Hormone disruptors can enter drinking water from a variety of sources, including agricultural, industrial, and household uses. Hormone disruptors can also be introduced into drinking water from storm water runoff and septic systems.

- Endocrine disruptors are chemicals that interfere with the body's ability to produce hormones. These chemicals can disrupt the normal functioning of the endocrine system and may interfere with reproduction, growth, and development. Endocrine disruptors can enter drinking water from a variety of sources, including agricultural, industrial, and household uses. Endocrine disruptors can also be introduced into drinking water from storm water runoff and septic systems.

- Hormones are chemicals that are produced in the body to control the body's functions. Hormones are important in the body's ability to regulate its systems and to maintain homeostasis. Hormones can enter drinking water from a variety of sources, including agricultural, industrial, and household uses. Hormones can also be introduced into drinking water from storm water runoff and septic systems.

- Hormone disruptors are chemicals that interfere with the body's ability to produce hormones. These chemicals can disrupt the normal functioning of the endocrine system and may interfere with reproduction, growth, and development. Hormone disruptors can enter drinking water from a variety of sources, including agricultural, industrial, and household uses. Hormone disruptors can also be introduced into drinking water from storm water runoff and septic systems.

- Endocrine disruptors are chemicals that interfere with the body's ability to produce hormones. These chemicals can disrupt the normal functioning of the endocrine system and may interfere with reproduction, growth, and development. Endocrine disruptors can enter drinking water from a variety of sources, including agricultural, industrial, and household uses. Endocrine disruptors can also be introduced into drinking water from storm water runoff and septic systems.

- Hormones are chemicals that are produced in the body to control the body's functions. Hormones are important in the body's ability to regulate its systems and to maintain homeostasis. Hormones can enter drinking water from a variety of sources, including agricultural, industrial, and household uses. Hormones can also be introduced into drinking water from storm water runoff and septic systems.

- Hormone disruptors are chemicals that interfere with the body's ability to produce hormones. These chemicals can disrupt the normal functioning of the endocrine system and may interfere with reproduction, growth, and development. Hormone disruptors can enter drinking water from a variety of sources, including agricultural, industrial, and household uses. Hormone disruptors can also be introduced into drinking water from storm water runoff and septic systems.

- Endocrine disruptors are chemicals that interfere with the body's ability to produce hormones. These chemicals can disrupt the normal functioning of the endocrine system and may interfere with reproduction, growth, and development. Endocrine disruptors can enter drinking water from a variety of sources, including agricultural, industrial, and household uses. Endocrine disruptors can also be introduced into drinking water from storm water runoff and septic systems.

- Hormones are chemicals that are produced in the body to control the body's functions. Hormones are important in the body's ability to regulate its systems and to maintain homeostasis. Hormones can enter drinking water from a variety of sources, including agricultural, industrial, and household uses. Hormones can also be introduced into drinking water from storm water runoff and septic systems.

- Hormone disruptors are chemicals that interfere with the body's ability to produce hormones. These chemicals can disrupt the normal functioning of the endocrine system and may interfere with reproduction, growth, and development. Hormone disruptors can enter drinking water from a variety of sources, including agricultural, industrial, and household uses. Hormone disruptors can also be introduced into drinking water from storm water runoff and septic systems.

- Endocrine disruptors are chemicals that interfere with the body's ability to produce hormones. These chemicals can disrupt the normal functioning of the endocrine system and may interfere with reproduction, growth, and development. Endocrine disruptors can enter drinking water from a variety of sources, including agricultural, industrial, and household uses. Endocrine disruptors can also be introduced into drinking water from storm water runoff and septic systems.

- Hormones are chemicals that are produced in the body to control the body's functions. Hormones are important in the body's ability to regulate its systems and to maintain homeostasis. Hormones can enter drinking water from a variety of sources, including agricultural, industrial, and household uses. Hormones can also be introduced into drinking water from storm water runoff and septic systems.
The table below presents the 2014 water quality monitoring results of each detected contaminant in comparison with the established drinking water standards. The table also summarizes the monitoring times, the range of detections, whether or not the drinking water standards were met, the major sources of the contaminant, and the locations detected.

DEFINITIONS:
1. **Action Level (AL)** - The concentration of a contaminant which, when exceeded, triggers treatment or other requirements which a water system must follow.
2. **Maximum Contaminant Level (MCL)** - The highest level of a contaminant allowed in drinking water; MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
3. **Maximum Contaminant Level Goal (MCLG)** - The level of a contaminant in drinking water below which there is no known or expected risk to health; MCLGs allow for a margin of safety.
4. **Maximum Residual Disinfectant Level Goal (MRDLG)** - The maximum level of a disinfectant added for water treatment at which no known or anticipated adverse health effect will occur; MRDLGs allow for a margin of safety.
5. **Treatment Technique (TT)** - A required process intended to reduce the level of a contaminant in drinking water.
6. **Secondary Maximum Contaminant Level (SMCL)** - Levels established by the National Secondary Drinking Water Regulations which control contaminants primarily affecting the aesthetic qualities relating to the public acceptability of drinking water.

ABBREVIATIONS:
- NTU - Nephelometric Turbidity Units
- ppb - parts per billion or micrograms per liter
- n/a - not applicable
- ppm - parts per million or milligrams per liter
- pCi/L - picocuries per liter
- ARA - annual running average
- ppm - parts per million or milligrams per liter
- WTP - water treatment plant
- nd - not detected
- WTP - water treatment plant
- N - not detected

I. PRIMARY STANDARDS, Mandatory, Health-Related Standards, established by OEHHA/USEPA

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>Sample Year</th>
<th>MCLG</th>
<th>MCL</th>
<th>AL</th>
<th>Your Water</th>
<th>Number of Samples Exceeding AL</th>
<th>Violation</th>
<th>Major Source of Contamination</th>
<th>Locations Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prilorm (ppb)</td>
<td>2014</td>
<td>0.26</td>
<td>nd</td>
<td>0.26</td>
<td></td>
<td></td>
<td>No</td>
<td>Herbicide runoff</td>
<td>Well NCS-9 (Radio Barracks)</td>
</tr>
<tr>
<td>Chlordane (ppb)</td>
<td>2014</td>
<td>0.23</td>
<td>0.15</td>
<td>0.23</td>
<td></td>
<td></td>
<td>No</td>
<td>Residue of banned pesticide</td>
<td>Well NCS-8</td>
</tr>
</tbody>
</table>

Inorganic Compounds

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>Sample Year</th>
<th>MCLG</th>
<th>MCL</th>
<th>AL</th>
<th>Your Water</th>
<th>Number of Samples Exceeding AL</th>
<th>Violation</th>
<th>Major Source of Contamination</th>
<th>Locations Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium (ppm)</td>
<td>2014</td>
<td>2.008</td>
<td>nd</td>
<td>0.0008</td>
<td></td>
<td></td>
<td>No</td>
<td>Discharge of drilling wastes; discharge from metal refineries; and erosion of natural deposits</td>
<td>Naval WTP Clearwell, NRC-1, NRC-2</td>
</tr>
<tr>
<td>Chromium (ppm)</td>
<td>2014</td>
<td>0.29</td>
<td>nd</td>
<td>0.29</td>
<td></td>
<td></td>
<td>No</td>
<td>Discharge from steel and pulp mills; erosion of natural deposits</td>
<td>Wells NCS-9, NCS-10, NCS-12, NRC-1</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>2014</td>
<td>0.53</td>
<td>nd</td>
<td>0.53</td>
<td></td>
<td></td>
<td>No</td>
<td>Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories</td>
<td>Naval WTP Clearwell, NRC-1, NRC-2</td>
</tr>
<tr>
<td>Nitrate (ppm)</td>
<td>2014</td>
<td>2.7</td>
<td>0.088</td>
<td>2.7</td>
<td></td>
<td></td>
<td>No</td>
<td>Runoff from fertilizer use; leaching from septic tanks; seavage; erosion of natural deposits</td>
<td>Naval WTP Clearwell, NRC-1, NRC-12, NRC-2, NRC-2</td>
</tr>
</tbody>
</table>

Radionuclides

<table>
<thead>
<tr>
<th>CONTAMINANT (Units)</th>
<th>Sample Year</th>
<th>MCLG</th>
<th>MCL</th>
<th>AL</th>
<th>Your Water</th>
<th>Number of Samples Exceeding AL</th>
<th>Violation</th>
<th>Major Source of Contamination</th>
<th>Locations Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha Activity (pCi/L)</td>
<td>2014</td>
<td>5.3</td>
<td>4.0</td>
<td>5.3</td>
<td></td>
<td></td>
<td>No</td>
<td>Erosion of natural deposits</td>
<td>Naval WTP Clearwell, NRC-1, NRC-2</td>
</tr>
</tbody>
</table>

Disinfectant and Disinfection Byproduct (DBPs)

<table>
<thead>
<tr>
<th>CONTAMINANT (Units)</th>
<th>Sample Year</th>
<th>MCLG</th>
<th>MCL</th>
<th>AL</th>
<th>Your Water</th>
<th>Number of Samples Exceeding AL</th>
<th>Violation</th>
<th>Major Source of Contamination</th>
<th>Locations Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>THM</td>
<td>2014</td>
<td>1.3</td>
<td>1.3</td>
<td>0.54</td>
<td></td>
<td></td>
<td>None</td>
<td>Corrosion of household plumbing system; erosion of natural deposits</td>
<td>Distribution system</td>
</tr>
<tr>
<td>TTHMs</td>
<td>2014</td>
<td>1.3</td>
<td>1.3</td>
<td>0.3</td>
<td></td>
<td></td>
<td>None</td>
<td>Corrosion of household plumbing system; erosion of natural deposits</td>
<td>Distribution system</td>
</tr>
</tbody>
</table>

Microbiological Contaminants

<table>
<thead>
<tr>
<th>CONTAMINANT (Units)</th>
<th>Sample Year</th>
<th>MCLG</th>
<th>MCL</th>
<th>AL</th>
<th>Reporting Value</th>
<th>Your Water</th>
<th>Violation</th>
<th>Major Source of Contamination</th>
<th>Locations Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform (TC)</td>
<td>2014</td>
<td>5%</td>
<td>3.9%</td>
<td>No</td>
<td>Naturally present in the environment</td>
<td>Naval WTP, Building 50, Radio Barracks</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Turbidity as an Indicator of Filtration Performance

<table>
<thead>
<tr>
<th>CONTAMINANT (Units)</th>
<th>Sample Year</th>
<th>MCLG</th>
<th>MCL</th>
<th>AL</th>
<th>Your Water</th>
<th>Violation</th>
<th>Major Source of Contamination</th>
<th>Locations Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity (NTU)</td>
<td>2014</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY OF REQUIRED MONITORING AND REPORTING

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>Period</th>
<th>Date(s) Sampled</th>
<th>Violation</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| VOC | 3rd QTR | 9/16/2014 | Yes | Reporting deadline for monitoring of an active well during the 3rd quarter of 2014 was not met due to the problem at the underground electrical power system supplying the well.

NOTES:
1. The MCL for beta particles is 4 mrem/year dose equivalents to bone marrow. EPA considers 50 pCi/L as the level of concern for beta particles.
2. Although there is no collective MCLG for this group, there are individual MCLGs for some of the individual contaminants. HAA: monochloroacetic acid (70 ppb), dichloroacetic acid (zero), trichloroacetic acid (20 ppb); THM: bromodichloromethane (zero), bromofrom (zero), chloroform (70 ppb), dibromochloromethane (60 ppb).
3. The AL is exceeded if the concentration of more than 10 percent of tap water samples collected (the “90th percentile” level) is greater than 1.3 ppm for copper and 15 ppb lead.
4. MCL = a routine sample and repeat sample from the same location are TC positive, or any routine or repeat sample is FC positive.